

ORGANIZZA

in collaborazione con

Associazione Nazionale Tecnici Enti Locali (ANTEL) - Commissione Sismica-GLIS di ANTEL Italia

Corso di formazione professionale

"CONOSCERE ED APPLICARE LE TECNOLOGIE AVANZATE DI PROTEZIONE SISMICA DELLE COSTRUZIONI"

Titolo del Corso: "Conoscere ed applicare le tecnologie avanzate di protezione sismica delle costruzioni"

Gli scenari di distruzione e di danno che si osservano ricorsivamente a livello nazionale ed internazionale nell'area mediterranea in occasione di terremoti con magnitudo superiori a 5 pongono costantemente anche i tecnici del nostro Paese di fronte alla necessità di stabilire e applicare strategie di protezione sempre più affidabili ed efficaci al fine di ridurre la vulnerabilità sismica del patrimonio edilizio. Dalla promulgazione delle Norme Tecniche NTC 2008 ad oggi, in Italia l'autonomia di supervisione e giudizio di conformità attribuita direttamente ai Geni Civili relativamente ad interventi includenti sistemi d'isolamento oppure di dissipazione supplementare di energia ha favorito, certamente, la diffusione delle nuove strategie di protezione sismica avanzata. La loro applicazione risulta spesso però non semplice e richiede grande preparazione tecnica da parte sia dei progettisti sia dei supervisori, che invece talvolta hanno conoscenze solo superficiali, e comunque spesso non adeguate, delle molteplici problematiche connesse all'ottenimento della massima efficienza dell'intervento proposto. Ciò vale dal punto di vista architettonico e tecnologico, oltreché strutturale.

Partendo da tali considerazioni il Corso si pone come obiettivo la divulgazione fra i tecnici degli elementi fondamentali di progettazione architettonica e strutturale di entrambe le strategie d'isolamento e dissipazione supplementare di energia, nonché di altre più recenti tecniche d'intervento da applicare ad edifici, anche d'interesse storico-architettonico ed allestimenti museali.

Articolato in 6 pomeriggi di quattro ore, il corso affronterà le seguenti tematiche:

- A. Isolamento sismico e dissipazione supplementare di energia: aspetti teorici e tecnologici
- B. Interventi di controventamento dissipativo e d'isolamento alla base per l'adeguamento di edifici esistenti
- C. Modellazione ed analisi di edifici protetti sismicamente
- D. Altre tecniche di adeguamento sismico
- E. Collaudo, monitoraggio e cantierizzazione degli interventi
- F. Comportamento sperimentale di dispositivi antisismici valutazione di conformità

Partendo dalla classificazione tipologica dei sistemi d'isolamento e di dissipazione ad oggi più utilizzati e dalla definizione delle differenze di comportamento fra essi, quindi degli ambiti di loro più efficace applicazione sia nella progettazione del nuovo che nell'esistente, nel corso verranno pertanto discusse le ricadute, a livello architettonico e tecnologico, della loro inclusione soprattutto per l'adeguamento di strutture esistenti. Verranno altresì affrontate le problematiche di sperimentazione dei sistemi considerati da condurre al fine dell'accettazione e della qualificazione dei dispositivi. A quest'ultimo riguardo verrà data agli iscritti l'opportunità di visitare, anche in forma virtuale, laboratori abilitati alla loro conduzione.

Coordinatore scientifico del corso: Prof.ssa Ing. Gloria Terenzi

Ente patrocinante: Commissione Sismica-GLIS di ANTEL

Con il Patrocinio morale degli Ordini degli Ingegneri delle Province di: Ancona, Bari, Bologna, Cosenza, Firenze, Genova, Messina, Potenza, Terni, Verona.

Ordine Ingegneri Genova

Responsabili scientifici: Prof.ssa Ing. Gloria Terenzi – PA di Tecnica delle costruzioni, Università di Firenze; Coordinatrice Nazionale della Commissione Sismica-GLIS di ANTEL Italia; Dott. Ing. Riccardo Palma – Responsabile Scientifico per l'Ordine degli Ingegneri di Asti

Il Corso prevede una suddivisione in due moduli comprendenti rispettivamente le giornate del **22, 25 settembre, 6 ottobre** (I modulo di 12 CFP), e del **27 ottobre, 3 e 10 novembre 2023** (Il modulo di 12 CFP) in orario 15,00-19,00. Al termine di ciascun modulo viene richiesta l'esecuzione di un test. La frequentazione dell'intero corso dà diritto a 24 CFP.

Nel periodo fra i due moduli, ai partecipanti verrà data l'opportunità di visita ad un cantiere, sito a Falconara Marittima, realizzativo dell'intervento di adeguamento di un condominio con isolamento alla base.

Materiale didattico: Lezioni del corso in formato PDF

Costo d'iscrizione: € 200,00 + IVA (€ 244,00)

Per le iscrizioni compilare il form al seguente link: COMPILA MODULO

Docenti del Corso:

Dott. Ing. Leonardo Bandini – Ordine degli Ingegneri di Firenze (Rappresentante della CSI Italia, Membro della Commissione Sismica-GLIS)

Dott. Ing. Iacopo Costoli – Ordine degli Ingegneri di Firenze (Dottorando, Università di Udine, Membro della Commissione Sismica-GLIS)

Prof. Ing. Andrea Dall'Asta – Ordine degli Ingegneri di Ancona (Professore Ordinario di Tecnica delle costruzioni, Università di Camerino, Membro della Commissione Sismica-GLIS)

Dr. Ing. Dario De Domenico – Ordine degli Ingegneri di Messina (Ricercatore, Università di Messina, Membro della Commissione Sismica-GLIS)

Dr. Ing. Antonio Di Cesare – Ordine degli Ingegneri di Potenza (Ricercatore, Università della Basilicata, Membro della Commissione Sismica-GLIS)

Dott. Ing. Federica Farinelli – Ordine degli Ingegneri di Ancona (Domus srl, Membro della Commissione Sismica-GLIS)

Prof.ssa Ing. Dora Foti – Ordine degli Ingegneri di Bari (Professore Ordinario di Tecnica delle Costruzioni, Politecnico di Bari, Membro della Commissione Sismica-GLIS)

Dr. Ing. Nicla Lamarucciola – Ordine degli Ingegneri di Potenza (Università della Basilicata, Membro della Commissione Sismica-GLIS)

Dr. Ing. Alessandro Martelli – Ordine degli Ingegneri di Bologna (Membro della Commissione Sismica-GLIS, Rappresentante della Commissione Sismica-GLIS nel Consiglio Nazionale dell'ANTEL, già Presidente GLIS)

Prof. Ing. Fabio Mazza – Ordine degli Ingegneri di Cosenza (Professore Associato di Tecnica delle costruzioni, Università della Calabria, Membro della Commissione Sismica-GLIS)

Dr. Ing. Antonello Mossucca – Ordine degli Ingegneri di Potenza (PHD e Assegnista di ricerca presso la Scuola di Ingegneria dell'Università della Basilicata, Membro della Commissione Sismica-GLIS)

Prof. Ing. Felice Carlo Ponzo – Ordine degli Ingegneri di Potenza (Professore Associato di Tecnica delle costruzioni, Università della Basilicata, Membro della Commissione Sismica-GLIS)

Prof.ssa Ing. Laura Ragni – Ordine degli Ingegneri di Ancona (Professore Associato di Tecnica delle costruzioni, Università Politecnica delle Marche, Membro della Commissione Sismica-GLIS)

Prof. Ing. Giuseppe Ricciardi – Ordine degli Ingegneri di Messina (Professore Ordinario di Scienza delle costruzioni, Università di Messina, Membro della Commissione Sismica-GLIS)

Prof. Ing. Stefano Sorace – Ordine degli Ingegneri di Firenze (Professore Ordinario di Tecnica delle costruzioni, Università di Udine, Membro della Commissione Sismica-GLIS)

Prof.ssa Ing. Gloria Terenzi – Ordine degli Ingegneri di Firenze (Professore Associato di Tecnica delle costruzioni, Università di Firenze, Coordinatrice Nazionale della Commissione Sismica-GLIS)

Prof. Ing. Alfonso Vulcano – Ordine degli Ingegneri di Cosenza (Già Professore Ordinario di Tecnica delle costruzioni, Università della Calabria, Membro della Commissione Sismica-GLIS)

Dott. Ing. Marco Zanfini – Ordine degli Ingegneri di Messina (Libero Professionista, Membro della Commissione Sismica-GLIS)

PROGRAMMA DETTAGLIATO: Corso "Conoscere ed applicare le tecnologie avanzate di protezione sismica delle costruzioni"

Venerdì 22 settembre 2023 Ore 15:00-19:00	Lunedì 25 settembre 2023 Ore 15:00-19:00	Venerdì 6 ottobre 2023 Ore 15:00-19:00	Venerdì 27 ottobre 2023 Ore 15:00-19:00	Venerdì 3 novembre 2023 Ore 15:00-19:00	Venerdì 10 novembre 2023 Ore 15:00-19:00
Isolamento sismico e dissipazione supplementare di energia: aspetti teorici e tecnologici	Interventi di controventamento dissipativo e d'isolamento alla base per l'adeguamento di edifici esistenti	Modellazione ed analisi di edifici protetti sismicamente	Altre tecniche di adeguamento sismico	Collaudo, monitoraggio e cantierizzazione degli interventi	Comportamento sperimentale di dispositivi antisismici
Stato attuale di divulgazione delle due tecniche (Alessandro Martelli)	dissipazione supplementare di energia	controventi dissipativi (Leonardo Bandini, Iacopo	endoscheletri dissipativi per l'adeguamento	Collaudo e monitoraggio di sistemi di protezione sismica (Alessandro Martelli)	Identificazione dinamica per la prevenzione del rischio di edifici e infrastrutture attraverso tecniche di monitoraggio innovative (Dora Foti)
Strategie tradizionali e tecnologie moderne di protezione sismica (Alfonso Vulcano)	tecnologie a costruzioni anche di pregio	(Leonardo Bandini, Iacopo	sismica mediante sistemi	Applicazioni di adeguamento per isolamento di edifici a telaio: problematiche di sollevamento, taglio ed inserimento dei dispositivi (Marco Zanfini)	Salvaguardia del patrimonio storico tramite identificazione dinamica delle strutture (Dora Foti)

Incremento della	Nuove prospettive nella	Esercitazione progettuale	Aspetti progettuali ed	Qualificazione dei Prodotti	Il laboratorio EUROLAB
prestazione sismica	progettazione di edifici	concernente il	applicazioni del Sistema	nel moderno linguaggio	del CERISI e alcune
degli edifici	isolati alla base alla luce	dimensionamento di un	CAM per l'adeguamento di	UE - esempi di marcatura	ricerche
mediante	delle più recenti normative	sistema d'isolamento con	edifici esistenti	CE, dichiarazione di	(Giuseppe Ricciardi)
isolamento e	sismiche	dispositivi HDRB, LRB,	(Federica Farinelli)	prestazione -DoP	
dissipazione	(Laura Ragni)	oppure DCSS – Parte I		(Felice Ponzo, Antonio Di	
(Stefano Sorace)		(Leonardo Bandini, Iacopo		Cesare, Antonello	
		Costoli)		Mossucca)	
Aspetti teorici e	Aspetti del miglioramento	Esercitazione progettuale	Sistemi intelaiati in legno	Sperimentazione ed	Prove sperimentali su
progettuali di base	sismico degli edifici storici	concernente il	lamellare con dissipazione	aspetti normativi	isolatori sismici e
riferiti a sistemi di	e della protezione di	dimensionamento di un	e post-tensione.	(Felice Ponzo, Antonello	problematiche nella loro
dissipazione	oggetti d'arte in essi	sistema d'isolamento con	(Nicla Lamarucciola)	Mossucca)	modellazione
supplementare di	contenuti	dispositivi HDRB, LRB,			(Dario De Domenico)
energia e di	(Stefano Sorace)	oppure DCSS – Parte II			
isolamento alla base		(Leonardo Bandini, Iacopo			
(Gloria Terenzi)		Costoli)			